
XLIFF 2 Extraction and Merging
Best Practice, Version 1.0

Editors David Filip and Ján Husarčík
WG Chair: Rodolfo M. Raya

Maxprograms
, Andreas Galambos

TAPICC T1/WG3
Copyright © 2018 GALA TAPICC. All rights reserved.

Additional artifacts

This prose specification is one component of a Work Product that also includes:

• Extraction and merging examples from https://galaglobal.github.io/TAPICC/T1/WG3/
wd01/extraction_examples/

An unstable editorial version of the examples might exist at https://galaglob-
al.github.io/TAPICC/T1/WG3/extraction_examples/

Related work

This note provides an informative best practice for XLIFF 2 Specifications:

• XLIFF Version 2.1 [XLIFF-2.1]

• XLIFF Version 2.0 [XLIFF-2.0]

• ISO 21720:2017 [ISO XLIFF]

Status

This Informational Best Practice was last revised by TAPICC T1/WG3 or the TAPICC Steer-
ing Committee on the above date. The level of approval is also listed above. Check the “Latest
version” location noted above for possible later revisions of this document.

Contributions to this deliverable or subsequent versions of this deliverable can be made via the
GALA TAPICC GitHub Repository subject to signing the TAPICC Legal Agreement.

Citation format

When referencing this specification the following citation format should be used:

[XLIFF-EM-BP]

XLIFF 2 Extraction and Merging Best Practice, Version 1.0 Edited by David Filip and Ján
Husarčík. 26 June 2018. Working Draft 01. https://galaglobal.github.io/TAPICC/T1/WG3/
wd01/XLIFF-EM-BP-V1.0-wd01.html. Latest version: N/A.html.

Notices

Copyright © GALA TAPICC 2018. All rights reserved.

1

https://galaglobal.github.io/TAPICC/T1/WG3/wd01/extraction_examples/
https://galaglobal.github.io/TAPICC/T1/WG3/wd01/extraction_examples/
https://galaglobal.github.io/TAPICC/T1/WG3/extraction_examples/
https://galaglobal.github.io/TAPICC/T1/WG3/extraction_examples/
https://github.com/GALAglobal/TAPICC
https://www.gala-global.org/tapicc-legal-agreement

XLIFF 2 Extraction and Merg-
ing Best Practice, Version 1.0

The Translation API Cases and Classes (TAPICC) initiative is a collaborative, community-dri-
ven, open source project to advance API standards in the Localization industry. The overall
purpose of this project is to provide a metadata and API framework on which users can base
their integration, automation and interoperability efforts.

The usage of all deliverables of this initiative - including this specification - is subject to open
source license terms expressed in the BSD-3-Clause License and CC-BY 2.0 License, the de-
clared applicable licenses when the project was chartered.

• The 3-Clause BSD License (BSD-3 Clause): https://opensource.org/licenses/BSD-3-Clause

• Creative Commons Legal Code (CC-BY 2.0): https://creativecommons.org/licenses/by/2.0/
legalcode

26 June 2018

Abstract

This Informational Best Practice specification targets designers of XLIFF Extracting and Merging tools for con-
tent owners. It gathers common problems that are prone to appear when Extracting XLIFF Documents from
HTML, generic XML, or Markdown. This specification shows why some Extraction approaches will cause is-
sues during an XLIFF Roundtrip. This best practice guidance provides better thought through alternatives and
shows how to use many of advanced XLIFF features for lossless Localization roundtrip of HTML and XML
based content.

Table of Contents
Terminology and Concepts ... 2
Introduction .. 3
Specification ... 3

XLIFF Structure .. 3
Inline Codes ... 5
Target Content in Extracted XLIFF .. 7
Editing and Context Hints .. 8
Miscellaneous ... 10
XLIFF Validations .. 13

Summary .. 14
References .. 14

Terminology and Concepts
Apart form terminology and concepts defined here, this specification makes heavy use of terms de-
fined in the XLIFF Standards [XLIFF-2.1] such as: Extractor, Merger, Translation, XLIFF Document,
XLIFF-defined, etc.

context hints XLIFF-defined attributes on structural or inline elements provid-
ing additional contexts, such as disp or equiv. Attributes fs
and subFs defined in the XLIFF Format Style Module are also
considered context hints.

inline codes <sc/>/<ec> pairs, orphaned <sc/> or <ec/>, well formed
<pc>, standalone <ph/> and <cp> are inline codes used to rep-
resent native format inline markup in XLIFF Documents.

Note
Inline codes can reference original data in the XLIFF
Core <originalData> standoff element.

2

https://opensource.org/licenses/BSD-3-Clause
https://creativecommons.org/licenses/by/2.0/legalcode
https://creativecommons.org/licenses/by/2.0/legalcode
http://docs.oasis-open.org/xliff/xliff-core/v2.1/xliff-core-v2.1.html#disp
http://docs.oasis-open.org/xliff/xliff-core/v2.1/xliff-core-v2.1.html#equiv
http://docs.oasis-open.org/xliff/xliff-core/v2.1/csprd01/xliff-core-v2.1-csprd01.html#fs-mod
http://docs.oasis-open.org/xliff/xliff-core/v2.1/os/xliff-core-v2.1-os.html#sc
http://docs.oasis-open.org/xliff/xliff-core/v2.1/os/xliff-core-v2.1-os.html#ec
http://docs.oasis-open.org/xliff/xliff-core/v2.1/os/xliff-core-v2.1-os.html#sc
http://docs.oasis-open.org/xliff/xliff-core/v2.1/os/xliff-core-v2.1-os.html#ec
http://docs.oasis-open.org/xliff/xliff-core/v2.1/os/xliff-core-v2.1-os.html#pc
http://docs.oasis-open.org/xliff/xliff-core/v2.1/os/xliff-core-v2.1-os.html#ph
http://docs.oasis-open.org/xliff/xliff-core/v2.1/os/xliff-core-v2.1-os.html#cp
http://docs.oasis-open.org/xliff/xliff-core/v2.1/os/xliff-core-v2.1-os.html#originaldata

XLIFF 2 Extraction and Merg-
ing Best Practice, Version 1.0

markers <sm/>/ pairs and well formed <mrk> are XLIFF-defined
inline marker elements designed for inline annotations of content
with metadata.

Note

Markers are distinct from inline codes (see). Mark-
ers can be combined with Module or Extension
based standoff elements for rich metadata that
would be complicated or impossible to display in-
line.

Introduction
This Informational Best Practice targets designers of XLIFF Extracting and Merging Tools for content
owners. XLIFF Roundtrip designers of all kinds will benefit, no matter if they design their XLIFF
Extractor/Merger for corporate or blog use.

Extraction and Merging behavior is out of the normative scope of OASIS XLIFF Specifications. Al-
though those specifications do provide some guidance for Extractor and Merger Agents, XLIFF TC
did not attempt to prescribe how exactly to use XLIFF to represent native content. This is mostly be-
cause XLIFF is a native-format-agnostic Localization Interchange Format.

This specification gathers common problems that are prone to appear when Extracting XLIFF Doc-
uments from HTML, generic XML, or Markdown. This specification shows why some Extraction
approaches will cause issues during an XLIFF Roundtrip, issues often so severe that Merging back
of target content will not be possible without costly post-processing or could fail utterly. This best
practice guidance provides better thought through alternatives and shows how to use many of the ad-
vanced XLIFF features for lossless Localization roundtrip of mainly HTML and XML based content.
Often, there are no ultimate prescribed solutions, rather possible design goals are described and best
methods how to achieve them proposed.

The concepts described in the next section are usually grouped by a common theme with no particular
order.

Specification
XLIFF Structure

Taking time to consider not only what to Extract, but how to Extract it, and how to structure the
XLIFF Document can significantly reduce number of issues during the roundtrip and enable usage of
additional features offered by the XLIFF Standards.

File Structure
Native formats can contain structural elements dividing its content into parts, such as title, body, header
and footer, or tables, lists and divs for markup languages; or windows, dialogs, and menus for software
resources.

Representing native structural elements in XLIFF using potentially nested <group> elements can be
useful for providing, and correctly scoping:

• additional context (name, type, subType, attributes from Format Style Module)

• restrictions (canResegment, translate, attributes from Size and Length Restriction Module)

• whitespace handling (xml:space)

3

http://docs.oasis-open.org/xliff/xliff-core/v2.1/xliff-core-v2.1.html#group
http://docs.oasis-open.org/xliff/xliff-core/v2.1/xliff-core-v2.1.html#name
http://docs.oasis-open.org/xliff/xliff-core/v2.1/xliff-core-v2.1.html#type
http://docs.oasis-open.org/xliff/xliff-core/v2.1/xliff-core-v2.1.html#subtype
http://docs.oasis-open.org/xliff/xliff-core/v2.1/xliff-core-v2.1.html#fs-mod
http://docs.oasis-open.org/xliff/xliff-core/v2.1/xliff-core-v2.1.html#canResegment
http://docs.oasis-open.org/xliff/xliff-core/v2.1/xliff-core-v2.1.html#translate
http://docs.oasis-open.org/xliff/xliff-core/v2.1/xliff-core-v2.1.html#size_restriction_module
http://docs.oasis-open.org/xliff/xliff-core/v2.1/xliff-core-v2.1.html#xml_space

XLIFF 2 Extraction and Merg-
ing Best Practice, Version 1.0

• information from modules such as:

• Metadata

• Validation

• ITS

Most of the above can still be achieved without using the optional <group> elements. It will be
however at the cost of high redundancy of unit level metadata and possibly cause potentially illegal
overload of some of the XLIFF Core features.

Example: group.

Role of the <unit> Element
Extractors set the XLIFF structure, which cannot be modified (an absolute prohibition expressed in the
XLIFF Standards) during the roundtrip at the unit level or higher. Ensuring or not that the appropriate
relationships drive Extraction from structures of the native format into XLIFF <unit> elements can
make all the difference between hindering or crippling the roundtrip and making the most of XLIFF
features in a compliant way.

Severe problems can be caused by both extremes: too many or not enough <unit> elements. Espe-
cially dangerous is Extracting every segment as a separate <unit> element as this will effectively
prevent Modifiers downstream to change segmentation. Changing segmentation within logically self
contained units is one of the key advantages of the XLIFF 2 structural data model that makes a distinc-
tion between the immutable high level structure (<unit> and higher) and the transient segmentation
structure (<segment> elements within each <unit>) that interplays with the inline data model and
the inline annotations' logic.

Example: mapping_to_unit.

Controlling Segmentation
Depending on Extraction rules for mapping of original document structures into XLIFF Documents,
individual sentences within a paragraph; verses within a stanza; items or entries of a list; rows or
cells of a table; items of a dialog window; and so on might be Extracted as segments of a single unit.
While it is generally not advisable to perform segmentation at the time of Extraction, Extractors that
Extracted multiple sentences, verses, entries, rows, and so on into a single non-segmented unit (a
single <segment> element within each <unit>) and their corresponding Mergers need to expect
that the Modifiers will need to transform them into individual segments within the same unit (multiple
<segment> elements representing individual sentences, verses, and so on within each <unit>)
during the roundtrip.

In cases where subsequent Modifiers cannot be reasonably expected to detect the segmentation logic,
for instance due to the lack of knowledge of the original format logic, the content owner is advised to
perform the segmentation and protection of that segmentation before sending their XLIFF Documents
for the service roundtrip.

While it's generally desirable to be able to Modify segmentation within a unit during the roundtrip,
doing so in some of the above cases might prevent Merging, cause build issues, or have negative
impact on target product user experience.

Attribute canResegment can be used with care to control segmentation Modification behavior. Its
values need to be controlled by rules derived from the structural and inline logic of the native format.
For instance, more often than not it will make sense to set canResegment to no for:

• lists

• tables or table rows

4

http://docs.oasis-open.org/xliff/xliff-core/v2.1/xliff-core-v2.1.html#metadata_module
http://docs.oasis-open.org/xliff/xliff-core/v2.1/xliff-core-v2.1.html#validation_module
http://docs.oasis-open.org/xliff/xliff-core/v2.1/xliff-core-v2.1.html#ITS-module
http://docs.oasis-open.org/xliff/xliff-core/v2.1/xliff-core-v2.1.html#group
https://github.com/GALAglobal/TAPICC/tree/master/extraction_examples/group
http://docs.oasis-open.org/xliff/xliff-core/v2.1/xliff-core-v2.1.html#unit
http://docs.oasis-open.org/xliff/xliff-core/v2.1/xliff-core-v2.1.html#unit
http://docs.oasis-open.org/xliff/xliff-core/v2.1/xliff-core-v2.1.html#unit
http://docs.oasis-open.org/xliff/xliff-core/v2.1/xliff-core-v2.1.html#unit
http://docs.oasis-open.org/xliff/xliff-core/v2.1/xliff-core-v2.1.html#segment
http://docs.oasis-open.org/xliff/xliff-core/v2.1/xliff-core-v2.1.html#unit
https://github.com/GALAglobal/TAPICC/tree/master/extraction_examples/mapping_to_unit
http://docs.oasis-open.org/xliff/xliff-core/v2.1/xliff-core-v2.1.html#segment
http://docs.oasis-open.org/xliff/xliff-core/v2.1/xliff-core-v2.1.html#unit
http://docs.oasis-open.org/xliff/xliff-core/v2.1/xliff-core-v2.1.html#segment
http://docs.oasis-open.org/xliff/xliff-core/v2.1/xliff-core-v2.1.html#unit
http://docs.oasis-open.org/xliff/xliff-core/v2.1/xliff-core-v2.1.html#canresegment
http://docs.oasis-open.org/xliff/xliff-core/v2.1/xliff-core-v2.1.html#canresegment

XLIFF 2 Extraction and Merg-
ing Best Practice, Version 1.0

• UI elements

Extracted as segments of a unit.

In UI elements and tables, it is likely that the available segmentation needs to be protected, on the
other hand, it is advisable not to change the default canResegment="yes" for normal paragraph
text and similar, see Role of the <unit> Element.

Importantly, preventing Modification of segmentation using the attribute canResegment (set to no
when necessary) will not prevent reordering of segments within a unit using the order attribute on
the <target> elements within the same unit. So in case an ordered list needs to be for instance
alphabetically collated, translators can do so even in case the canResegment attribute is set to
no. The segmentation logic of the native format remains protected without preventing collation. This
would be all hampered if the Extractor decided to Extract each segment as a separate unit, which is
the most evil practice that cannot be discouraged enough.

Example: mapping_to_unit.

Inline Codes
Guidance for processing standalone and spanning inline functional and formatting elements of local-
izable content can be summarized into the following list:

• Perform complete extraction

• Represent spanning code using <sc/> and <ec/> (or <pc></pc> where possible)

• Represent standalone code using <ph>

• Include all (even the outermost) inline codes in the Extracted content

• Additional details in the XLIFF2 prose.

Representing Spanning Codes
Spanning codes in the original format are created by an opening code, the content, and the closing
code. In HTML that can be <bold>text</bold>, in RTF \b text \b0.

In XLIFF Documents, such code can be always represented with an <sc/>/<ec/> pair, or with
spanning <pc></pc>, only for well formed markup.

Ideally, the original format is documented well enough to instruct Extractors about the role of each
inline code. For example, XML Schema allows to declare elements using the keyword EMPTY. This
way, all elements that are not declared EMPTY, can be represented as described above. To further help
the Extraction process, the following recommendation could be implemented in the original XML
format: “For interoperability, the empty-element tag SHOULD be used, and SHOULD only be used,
for elements which are declared EMPTY.”[XML].

Following this recommendation of the XML specification, an empty ought to be encoded as
 and therefore represented as an <sc/>/<ec/> pair in XLIFF Documents, unlike
the always empty
 that has to be represented as a standalone placeholder code <ph/>.

This concept is illustrated by the bad practice example spanning_as_ph.

This kind of bad practice encoding doesn't inform the Translating Agent (human or machine Modifier)
that the original code formed a span and effectively the original spanning code is not protected during
the roundtrip. The standalone <ph/> codes can be switched or one of them omitted; simply, the span is
likely to end up misplaced, malformed, or empty simply because the Translation editor cannot convey

5

http://docs.oasis-open.org/xliff/xliff-core/v2.1/xliff-core-v2.1.html#canresegment
http://docs.oasis-open.org/xliff/xliff-core/v2.1/xliff-core-v2.1.html#canresegment
http://docs.oasis-open.org/xliff/xliff-core/v2.1/xliff-core-v2.1.html#order
http://docs.oasis-open.org/xliff/xliff-core/v2.1/xliff-core-v2.1.html#target
http://docs.oasis-open.org/xliff/xliff-core/v2.1/xliff-core-v2.1.html#canresegment
https://github.com/GALAglobal/TAPICC/tree/master/extraction_examples/mapping_to_unit
http://docs.oasis-open.org/xliff/xliff-core/v2.1/xliff-core-v2.1.html#sc
http://docs.oasis-open.org/xliff/xliff-core/v2.1/xliff-core-v2.1.html#ec
http://docs.oasis-open.org/xliff/xliff-core/v2.1/xliff-core-v2.1.html#pc
http://docs.oasis-open.org/xliff/xliff-core/v2.1/xliff-core-v2.1.html#ph
http://docs.oasis-open.org/xliff/xliff-core/v2.1/xliff-core-v2.1.html
http://docs.oasis-open.org/xliff/xliff-core/v2.1/xliff-core-v2.1.html#sc
http://docs.oasis-open.org/xliff/xliff-core/v2.1/xliff-core-v2.1.html#ec
http://docs.oasis-open.org/xliff/xliff-core/v2.1/xliff-core-v2.1.html#pc
http://docs.oasis-open.org/xliff/xliff-core/v2.1/xliff-core-v2.1.html#sc
http://docs.oasis-open.org/xliff/xliff-core/v2.1/xliff-core-v2.1.html#ec
http://docs.oasis-open.org/xliff/xliff-core/v2.1/xliff-core-v2.1.html#ph
https://github.com/GALAglobal/TAPICC/tree/master/extraction_examples/spanning_as_ph
http://docs.oasis-open.org/xliff/xliff-core/v2.1/xliff-core-v2.1.html#ph

XLIFF 2 Extraction and Merg-
ing Best Practice, Version 1.0

to the translator that the codes need to enclose a certain portion of the original content and what is the
semantics of the original code span.

Outermost Tag Pairs
In some cases, the inline codes can enclose the localizable string in a way that could suggest omitting
them in the Extracted text. For example, a paragraph containing only a link text, could be Extracted
as the link text only, without the <a> decoration being represented. This relates to the previous
bad practice example with the spanning tag represented as two empty <ph/> elements.

In case the <a> decoration is not represented, the translator loses valuable context (they cannot
check the link), more importantly they don't know that the text is a link text, and moreover are unable
to add any text outside of the link span, which might be advisable or even mandatory in certain locales.

Ideally, a consistent approach to all inline codes ought to be used during Extraction.

See the relevant bad practice example outermost_inline_excluded.

Incomplete Extraction of Inline Codes
Some implementers choose not to Extract inline codes at all and use one of the following approaches
instead:

• CDATA sections as content of <source> and <target> elements (cdata)

• Escaping of native codes using XML entities (inline_codes_plain_text)

Doing one of the above can be used as a useful interim Extraction step when producing XLIFF Doc-
uments that are fit for roundtrip. However, it is strongly discouraged to send XLIFF Documents with
the inline content not fully parsed for Localization roundtrip.

Such incomplete Extraction leaves inline codes unprotected and increases the risk of their corruption
during the roundtrip, simply pushing the problem of inline code handling downstream.

According to the XLIFF [XLIFF-2.1] Standards, Modifiers can perform secondary parsing:

“Writers may preserve original CDATA sections” (meaning that it is entirely optional to preserve
CDATA sections and that XLIFF Writers are not obliged to preserve CDATA sections)

and

text can be converted into inline codes.

Mergers have to accept XLIFF files with valid modifications, even though they may ignore the added
codes.

Finally, it is considered an XML internationalization best practice to avoid CDATA sections in local-
izable content. This best practice is of course also valid for XLIFF <source> elements.

Strictly speaking, it is not illegal to create XLIFF Documents that contain CDATA sections or unparsed
entities instead of fully parsed XLIFF inline content. However, considering all of the above, it is clear
that unparsed inline content makes XLIFF Documents unfit for a fully interoperable roundtrip. Again,
strictly speaking, XLIFF Documents with unparsed inline content are capable of roundtrip but all the
effort that is saved on Extraction will cause unpredictable issues and hence even more effort when
Merging back.

Implementers need to consider that XLIFF Documents with unparsed inline content are very likely
to return with critical inline syntax or formatting corruptions that cannot be prevented on CDATA
sections or entities that are both opaque to XLIFF Modifiers. Such corruptions are likely to prevent
proper functionality of target content in the native environment. In case XLIFF Modifiers do perform

6

https://github.com/GALAglobal/TAPICC/blob/master/extraction_examples/spanning_as_ph/bad_opening_excluded.xlf
http://docs.oasis-open.org/xliff/xliff-core/v2.1/xliff-core-v2.1.html#ph
https://github.com/GALAglobal/TAPICC/tree/master/extraction_examples/outermost_inline_excluded
http://docs.oasis-open.org/xliff/xliff-core/v2.1/xliff-core-v2.1.html#source
http://docs.oasis-open.org/xliff/xliff-core/v2.1/xliff-core-v2.1.html#target
https://github.com/GALAglobal/TAPICC/tree/master/extraction_examples/cdata
https://github.com/GALAglobal/TAPICC/tree/master/extraction_examples/inline_codes_plain_text
http://docs.oasis-open.org/xliff/xliff-core/v2.1/xliff-core-v2.1.html#d0e8112
http://docs.oasis-open.org/xliff/xliff-core/v2.1/xliff-core-v2.1.html#d0e8993
http://docs.oasis-open.org/xliff/xliff-core/v2.1/xliff-core-v2.1.html#ApplicationConformance
addingcodeshttp://docs.oasis-open.org/xliff/xliff-core/v2.1/xliff-core-v2.1.html#addingcodes
addingcodeshttp://docs.oasis-open.org/xliff/xliff-core/v2.1/xliff-core-v2.1.html#addingcodes
https://www.w3.org/TR/xml-i18n-bp/#AuthCDATA
http://docs.oasis-open.org/xliff/xliff-core/v2.1/xliff-core-v2.1.html#source

XLIFF 2 Extraction and Merg-
ing Best Practice, Version 1.0

the secondary parsing of content unparsed on Extraction, which is allowed by the standard, corruption
will be prevented, however, Mergers will need to perform unparsing to facilitate merging back into
the native environment, because XLIFF Modifiers are not and cannot be obliged to unparse back to
CDATA sections or entities not knowing the Extraction and Merging logic of the XLIFF Document
originator.

Representing Multiple Subsequent Codes
As original inline codes can occur in clusters, for instance as nested formatting, implementers could
be tempted to combine such markup on Extraction and represent it as a single inline element.

This kind of Extraction is likely to prevent potentially desirable Modification of inline codes, affecting
Translation quality. It will also prevent usage of fine grained code metadata (for instance context,
display, and editing hints) or automated format validation during the roundtrip.

On the other hand, some potential benefit can be perceived in reducing markup inside segment content,
which is useful in CAT tools that cannot properly display the inline codes (render information available
through original data or context hints). In such tools, less markup reduces the visual clutter and makes
the translatable text more readable. This can be solved by proper choice of CAT tools (short term)
or by large buyers requesting that offending tool vendors do support proper rendering of inline code
data and metadata (mid and long term).

Implementers need to consider the pros and cons of both approaches and use the one that best matches
their business need.

For examples see multiple_codes_represented_as_single.

Target Content in Extracted XLIFF
This section focuses on reasons whether or not to populate the <target> element during Extraction
or Enriching and when to do so, if at all.

Generally, one should omit the <target> element, unless there is an added value and also in cases
where the specification offers another dedicated solution. Proper support of the state machine during
the whole roundtrip helps Agents to process and validate the XLIFF Documents as intended.

When looking at the situation from the microservices architecture point of view, the Extractor/Merger
ought to be implemented as just that — a single purpose Extraction/Merging service that delegates
any other operations, such as segmentation or Enriching to other specialized services.

Output of such extractor would be a target language agnostic XLIFF Document with source content
only, possibly with additional modules/extensions which could not be generated after extraction, for
example Size and Length Restriction Module or Format Style Module.

Unless the implementer has a specific need to create target language specific instances of the extracted
XLIFF Document, for instance by Enriching with translation candidates, the Extracted XLIFF Docu-
ment could and ought to be sent downstream for the Localization roundtrip as-is.

Inserting Source Content into <target>
The copy of the source content in <target> elements generally does not provide any advantage
during the XLIFF roundtrip. On the contrary, it brings disadvantages such as needlessly increasing the
size of the XLIFF Document or enforcing existence of the trgLang attribute with a specific BCP 47
compliant value. Populated <target> elements are also likely to prevent segmentation modification,
unless the target content is intentionally removed (which service providers are understandably hesitant
to do). Not the least issue is that the source content copied to the target actually is not in the target
language indicated by the BCP 47 tag on the XLIFF root element, which can cause a host of other
processing issues. The bad practice of populating <target> elements with source content used to
facilitate parsing and editing of XLIFF in Translation editors or generic XML editors that didn't have

7

https://github.com/GALAglobal/TAPICC/tree/master/extraction_examples/multiple_codes_represented_as_single
http://docs.oasis-open.org/xliff/xliff-core/v2.1/xliff-core-v2.1.html#target
http://docs.oasis-open.org/xliff/xliff-core/v2.1/xliff-core-v2.1.html#target
http://docs.oasis-open.org/xliff/xliff-core/v2.1/xliff-core-v2.1.html#size_restriction_module
http://docs.oasis-open.org/xliff/xliff-core/v2.1/xliff-core-v2.1.html#fs-mod
http://docs.oasis-open.org/xliff/xliff-core/v2.1/os/xliff-core-v2.1-os.html#candidates
http://docs.oasis-open.org/xliff/xliff-core/v2.1/xliff-core-v2.1.html#target
http://docs.oasis-open.org/xliff/xliff-core/v2.1/xliff-core-v2.1.html#trgLang
http://docs.oasis-open.org/xliff/xliff-core/v2.1/xliff-core-v2.1.html#target
http://docs.oasis-open.org/xliff/xliff-core/v2.1/xliff-core-v2.1.html#target

XLIFF 2 Extraction and Merg-
ing Best Practice, Version 1.0

XLIFF support and could only open for translation certain elements in generic XML formats. As such,
this practice is strongly discouraged.

Bad practice example: source_in_target.

Inserting Possible Translations into <target> elements
Enriching Agents can use translation memories, machine translation engines, or other means to obtain
suitable translation candidate strings in the target language to be used later in the roundtrip, for example
as suggestions for translators, to achieve better leverage, or to get higher consistency with previous
translations.

Using the <target> element for storing such translation candidates limits the number of the possible
proposed translations to a single one per segment. Moreover, this way it's not possible to pass critical
metadata about the translation candidate, such as its origin, similarity, or quality (all those are available
in a dedicated module), causing interoperability issues for Agents without prior knowledge of the
workflow.

Inserting translation candidates into <target> elements during Extraction or Enriching constitutes
an illegal overload of the core element with a clearly set purpose. The Translation Candidates Module
was designed exactly to provide translators with multiple translation candidates along with metadata
that facilitate decision making and effective reuse. Moreover, the module can address sub-segment
matches.

Example: pre-populated_target.

State Machine
The XLIFF specification contains attributes for managing a segment state machine. The attributes
used are <state> and <subState>. The <subState> attribute can only be used as long as the
<state> attribute is used. The <state> attribute is for high level interoperability. The <subS-
tate> attribute allows implementers to define private sub-state machines that can give more fine-
grained sub-states based on their private workflow needs.

The <state> attribute defines just a high level four states state engine. The values are initial,
translated, reviewed, and final. Although this attribute is optional on the <segment> el-
ement, it is assumed as having the default value initial whenever not used explicitly. There are
some important advantages to using the state machine explicitly. Importantly, <target> elements
are optional in the initial state. So if you want to even enforce <target> existence in your de-
liverables you should be using at least the high level four states state engine provided by the Core at-
tribute state. Setting the state attribute of a <segment> to translated or later does enforce
<target> existence within that segment.

Using the high level states reviewed and final gives you even more control over the progressive
validation of the XLIFF Documents you're roundtripping. All of the states translated, reviewed,
and final will trigger validation of the inline data model within <target> elements, which is
not being validated in the initial state where even the existence of <target> elements is not
assumed. Violations of the inline data model including Editing hints are being tested in all states
more advanced than initial. Those violations are considered "Warnings" at translated and
reviewed states. Only in the final state, those violations will become actual "Errors" that render
the XLIFF Document invalid.

Editing and Context Hints
The XLIFF specification provides a number of attributes that allow to manage the behavior and vali-
dation of structural and inline elements; such as controlling the localizability of text; protecting non-
deletable inline codes, or preserving their order; controlling the segmentation modification; or provid-
ing additional context to other agents downstream.

8

https://github.com/GALAglobal/TAPICC/tree/master/extraction_examples/source_in_target
http://docs.oasis-open.org/xliff/xliff-core/v2.1/xliff-core-v2.1.html#target
http://docs.oasis-open.org/xliff/xliff-core/v2.1/xliff-core-v2.1.html#target
http://docs.oasis-open.org/xliff/xliff-core/v2.1/xliff-core-v2.1.html#candidates
https://github.com/GALAglobal/TAPICC/tree/master/extraction_examples/pre-populated_target
http://docs.oasis-open.org/xliff/xliff-core/v2.1/xliff-core-v2.1.html#state
http://docs.oasis-open.org/xliff/xliff-core/v2.1/xliff-core-v2.1.html#substate
http://docs.oasis-open.org/xliff/xliff-core/v2.1/xliff-core-v2.1.html#substate
http://docs.oasis-open.org/xliff/xliff-core/v2.1/xliff-core-v2.1.html#state
http://docs.oasis-open.org/xliff/xliff-core/v2.1/xliff-core-v2.1.html#state
http://docs.oasis-open.org/xliff/xliff-core/v2.1/xliff-core-v2.1.html#substate
http://docs.oasis-open.org/xliff/xliff-core/v2.1/xliff-core-v2.1.html#substate
http://docs.oasis-open.org/xliff/xliff-core/v2.1/xliff-core-v2.1.html#state
http://docs.oasis-open.org/xliff/xliff-core/v2.1/xliff-core-v2.1.html#segment
http://docs.oasis-open.org/xliff/xliff-core/v2.1/xliff-core-v2.1.html#target
http://docs.oasis-open.org/xliff/xliff-core/v2.1/xliff-core-v2.1.html#target
http://docs.oasis-open.org/xliff/xliff-core/v2.1/xliff-core-v2.1.html#state
http://docs.oasis-open.org/xliff/xliff-core/v2.1/xliff-core-v2.1.html#state
http://docs.oasis-open.org/xliff/xliff-core/v2.1/xliff-core-v2.1.html#segment
http://docs.oasis-open.org/xliff/xliff-core/v2.1/xliff-core-v2.1.html#target
http://docs.oasis-open.org/xliff/xliff-core/v2.1/os/xliff-core-v2.1-os.html#target
http://docs.oasis-open.org/xliff/xliff-core/v2.1/xliff-core-v2.1.html#target

XLIFF 2 Extraction and Merg-
ing Best Practice, Version 1.0

The default values of the editing hints and potential need to set them otherwise need to be considered
when creating Extraction rules to prevent issues which can be only identified by automated validation
with editing hints set as intended.

Non-deletable Inline Codes
Original source text can contain functional inline codes apart from formatting ones, such as software
placeholders to be replaced during runtime. Removal of these placeholders or other functional code,
either intentional or accidental, during the Translation roundtrip can produce valid XLIFF Documents
that will nevertheless fail to merge back, cause build failures later on, or create other functional issues
in the Translated product.

The XLIFF specification provides the editing hint canDelete with its default value set to yes that
is thus automatically used or can be explicitly set on any inline code. For most of the formatting codes,
the default value yes is fine, so that there is no need to set the attribute explicitly most of the times.
The default value means that the codes can be removed during localization as the translators see fit. A
typical example is the need to remove italics or bold formatting codes in Chinese or Japanese target
content. These languages don't use typographical methods of emphasis and non-deletable formatting
codes tend to complicate life of translators into such languages. On the other hand, Extractors need
to take care to set the canDelete attribute to no explicitly whenever an inline code is critical for
Merging back of the XLIFF Document, their build process, or product functionality.

Preserving Order of Codes
In case the order or nesting of inline codes in the original document is prescribed (for instance by a
schema), it has to be preserved in the target content during the localization roundtrip to prevent Merge
issues, or validation fails after Merging.

The attribute canReorder on the inline code determines, whether each code can be moved before,
or after another code. Again, the default value of this attribute is yes meaning that the inline codes
can be reordered as the translators see fit.

This attribute is used to create and protect non-reorderable sequences of inline codes if necessary for
proper inline code functionality.

Example 1. Example of a non-reorderable source sequence of inline codes

...
<source><pc id="1" canCopy="no" canDelete="no" canReorder="firstNo">
 <pc id="2" canCopy="no" canDelete="no" canReorder="no">this is linktext</pc>
 <ph id="3" canCopy="no" canDelete="no" canReorder="no"/>
 </pc>
</source>
...

Since this attribute is supported by native XLIFF validation artifacts (XLIFF Core Schematron
Schemas), potential reordering of the <pc/> and <ph/> tags in the corresponding <target> el-
ement will be called out when validating <segment> elements with the state more advanced than
initial. See also the Sate Machine section.

Example: editing_hints_canReorder.

Providing Context
The Agents in the roundtrip, human or machines, need enough information to make appropriate deci-
sions regarding operations on inline codes, and how the codes impact the adequacy and fluency of the
target text, the context in short.

These additional metadata can be provided using the context hints attributes: disp (dispStart/
dispEnd), equiv (equivStart/equivEnd), type, and subType.

9

http://docs.oasis-open.org/xliff/xliff-core/v2.1/xliff-core-v2.1.html#candelete
http://docs.oasis-open.org/xliff/xliff-core/v2.1/xliff-core-v2.1.html#candelete
http://docs.oasis-open.org/xliff/xliff-core/v2.1/xliff-core-v2.1.html#canreorder
http://docs.oasis-open.org/xliff/xliff-core/v2.1/xliff-core-v2.1.html#pc
http://docs.oasis-open.org/xliff/xliff-core/v2.1/xliff-core-v2.1.html#ph
http://docs.oasis-open.org/xliff/xliff-core/v2.1/xliff-core-v2.1.html#target
http://docs.oasis-open.org/xliff/xliff-core/v2.1/xliff-core-v2.1.html#segment
https://github.com/GALAglobal/TAPICC/tree/master/extraction_examples/editing_hints_canReorder
http://docs.oasis-open.org/xliff/xliff-core/v2.1/xliff-core-v2.1.html#disp
http://docs.oasis-open.org/xliff/xliff-core/v2.1/xliff-core-v2.1.html#dispstart
http://docs.oasis-open.org/xliff/xliff-core/v2.1/xliff-core-v2.1.html#dispend
http://docs.oasis-open.org/xliff/xliff-core/v2.1/xliff-core-v2.1.html#equiv
http://docs.oasis-open.org/xliff/xliff-core/v2.1/xliff-core-v2.1.html#equivstart
http://docs.oasis-open.org/xliff/xliff-core/v2.1/xliff-core-v2.1.html#equivend
http://docs.oasis-open.org/xliff/xliff-core/v2.1/xliff-core-v2.1.html#type
http://docs.oasis-open.org/xliff/xliff-core/v2.1/xliff-core-v2.1.html#subtype

XLIFF 2 Extraction and Merg-
ing Best Practice, Version 1.0

The XLIFF Standards provide the <originalData> that ought to be used to store the native con-
tent of the represented inline elements. Its <data> child can even contain CDATA sections that are
strongly discouraged in XLIFF content.

Original data, as a sort of internal skeleton, are likely to be intended to facilitate collaboration between
the Extractor and the Merger, not necessarily suitable for use by other roundtrip Agents. The original
data content can be, for instance, too long to render correctly in the CAT tool.

Extractors are encouraged to populate the value of equiv attributes with a suitable plain text repre-
sentation of the original data and the corresponding disp attributes with a user-friendly variant of
the same.

Alternatively, the same task could be performed further downstream by an Enricher that can under-
stand the content of the <originalData>. Separating features of Extractors and Enrichers is in
line with SOA and microservices architectures.

Example: context_hints.

Considerations for Using Spanning Codes
Compared to the <pc> pair tag, which can be only used to represent well-formed spanning codes with-
in a single <segment>, the more universal <sc/>/<ec/> pair can handle segmentation changes,
span across segments, other codes, or annotations, and even represent orphaned native inline codes.
Sounds great, so why use <pc>at all?

The fact that <sc/>/<ec/> pairs do support for overlapping codes will, however, create an issue
in a situation where <sc>/<ec> pairs are used to represent multiple well-formed spanning codes
without setting their canOverlap attribute to no. In such cases, the well-formedness of the original
codes is not protected and can be corrupted during the roundtrip. It will be impossible to prevent
this corruption with native XLIFF methods unless the canOverlap and possibly canReorder
attributes are properly set. So in case of representing well-formed native markup, using the <pc> pair
tag is likely to be easier for the Extactor. On the other hand, it is important to consider that transforming
the <pc> pair tag into an <sc/>/<ec/> pair is always allowed. So the Mergers need to prepared to
handle <sc/>/<ec/> even in case their corresponding Extractor used only the <pc> pair tag.

Example: editing_hints_canOverlap.

Miscellaneous
There are many other good or bad practice concepts that do not belong to any of the above categories.
Some of them are listed in this section:

Value of the Attribute id
Implementers could be tempted to store values of resource Ids in the id attribute of XLIFF structural
or elements. It should be stressed that the XLIFF id attribute is intended for internal and external
addressing of XLIFF fragments. While the XLIFF id value is restricted to NMTOKEN, the native
format might not have such a restriction. Invalid characters in XLIFF id attributes will render the
whole XLIFF Document invalid. Although this would typically be discovered as soon as the first
validation occurs, it can still be costly to fix in a large or a long running project.

Note

A real life example:

A long running software localization project used its resource Ids as XLIFF id attributes
in the role of the guaranteed key for In-Context Exact TM leverage. After a while, a
new developer changed the style for generating resource Ids. The new Id did not fit the

10

http://docs.oasis-open.org/xliff/xliff-core/v2.1/xliff-core-v2.1.html#originaldata
http://docs.oasis-open.org/xliff/xliff-core/v2.1/xliff-core-v2.1.html#data
http://docs.oasis-open.org/xliff/xliff-core/v2.1/xliff-core-v2.1.html#equiv
http://docs.oasis-open.org/xliff/xliff-core/v2.1/xliff-core-v2.1.html#disp
http://docs.oasis-open.org/xliff/xliff-core/v2.1/xliff-core-v2.1.html#originaldata
https://github.com/GALAglobal/TAPICC/tree/master/extraction_examples/context_hints
http://docs.oasis-open.org/xliff/xliff-core/v2.1/xliff-core-v2.1.html#pc
http://docs.oasis-open.org/xliff/xliff-core/v2.1/xliff-core-v2.1.html#segment
http://docs.oasis-open.org/xliff/xliff-core/v2.1/xliff-core-v2.1.html#sc
http://docs.oasis-open.org/xliff/xliff-core/v2.1/xliff-core-v2.1.html#ec
http://docs.oasis-open.org/xliff/xliff-core/v2.1/xliff-core-v2.1.html#pc
http://docs.oasis-open.org/xliff/xliff-core/v2.1/xliff-core-v2.1.html#sc
http://docs.oasis-open.org/xliff/xliff-core/v2.1/xliff-core-v2.1.html#ec
http://docs.oasis-open.org/xliff/xliff-core/v2.1/xliff-core-v2.1.html#sc
http://docs.oasis-open.org/xliff/xliff-core/v2.1/xliff-core-v2.1.html#ec
http://docs.oasis-open.org/xliff/xliff-core/v2.1/xliff-core-v2.1.html#canoverlap
http://docs.oasis-open.org/xliff/xliff-core/v2.1/xliff-core-v2.1.html#canoverlap
http://docs.oasis-open.org/xliff/xliff-core/v2.1/xliff-core-v2.1.html#canoverlap
http://docs.oasis-open.org/xliff/xliff-core/v2.1/xliff-core-v2.1.html#pc
http://docs.oasis-open.org/xliff/xliff-core/v2.1/xliff-core-v2.1.html#pc
http://docs.oasis-open.org/xliff/xliff-core/v2.1/xliff-core-v2.1.html#sc
http://docs.oasis-open.org/xliff/xliff-core/v2.1/xliff-core-v2.1.html#ec
http://docs.oasis-open.org/xliff/xliff-core/v2.1/xliff-core-v2.1.html#sc
http://docs.oasis-open.org/xliff/xliff-core/v2.1/xliff-core-v2.1.html#ec
http://docs.oasis-open.org/xliff/xliff-core/v2.1/xliff-core-v2.1.html#pc
https://github.com/GALAglobal/TAPICC/tree/master/extraction_examples/editing_hints_canOverlap
http://docs.oasis-open.org/xliff/xliff-core/v2.1/xliff-core-v2.1.html#id
http://docs.oasis-open.org/xliff/xliff-core/v2.1/xliff-core-v2.1.html#id
http://docs.oasis-open.org/xliff/xliff-core/v2.1/xliff-core-v2.1.html#fragid
http://docs.oasis-open.org/xliff/xliff-core/v2.1/xliff-core-v2.1.html#id
http://docs.oasis-open.org/xliff/xliff-core/v2.1/xliff-core-v2.1.html#id
http://docs.oasis-open.org/xliff/xliff-core/v2.1/xliff-core-v2.1.html#id

XLIFF 2 Extraction and Merg-
ing Best Practice, Version 1.0

NMTOKEN restriction, which led to a complex redesign of the localization and TM
leverage workflow.

The XLIFF name attribute is designed to store the original identifier of the resource, it can be any
string without restrictions. On the <file> element, the original attribute can be used for the same
purpose.

Example: id_and_name.

Whitespace Handling
Whitespaces can be important inside nodes such as <pre>, containing for instance code samples, and
Modifying them during the roundtrip is not desirable.

Whitespaces (more than one of the whitespace characters in a sequence) are, however, generally in-
significant in the text nodes of markup formats, such as XML or HTML, and can be changed anytime
(even not intentionally as an XLIFF transform) by, for example, reformatting and indentation (so called
pretty-printing) without affecting the layout of the rendered document.

Thus, one cannot indiscriminately either preserve, or normalize. Since most of TMS and CAT tools
penalize whitespace discrepancies, the leverage could be negatively affected if whitespaces are Mod-
ified, and layout of nodes with significant whitespace could be corrupted.

The general best practice, also taking into account the ITS Preserve Space data category is the fol-
lowing:

The Extractor itself ought to

1. Normalize native content where possible, not relying on other Agents in the roundtrip to do so and

2. protect XLIFF structural elements with xml:space set to preserve.

Please note that the XLIFF default for xml:space is default. Therefore, it is important to ensure
that content with mixed whitespace behavior is normalized and then protected with xml:space
explicitly set to or inherited as preserve. The default XLIFF Core behavior is only useful if all
whitespace is globally insignificant.

Additional details in the XLIFF spec.

Example: xml_space_preserve.

Protecting Non-localizable Content
There are cases, when it's necessary to prevent localization of inline content parts otherwise exposed
to localization, be it brand names, or functional inline code, such as software placeholders.

XLIFF offers two options for :

• translate annotation

• <ph>

each of them having different purpose and offering different features and options.

Careful consideration is necessary to decide which way to protect a particular non-translatable string
type, as the two methods are neither equivalent nor interchangeable.

Usually, the translate annotation is suitable for protecting linguistically significant content, e. g. non-
localizable brand or product names, while <ph> is better for representing standalone codes without a
syntactic role, typically standalone formatting artifacts such as
.

11

http://docs.oasis-open.org/xliff/xliff-core/v2.1/xliff-core-v2.1.html#name
http://docs.oasis-open.org/xliff/xliff-core/v2.1/xliff-core-v2.1.html#file
http://docs.oasis-open.org/xliff/xliff-core/v2.1/xliff-core-v2.1.html#original
https://github.com/GALAglobal/TAPICC/tree/master/extraction_examples/id_and_name
https://www.w3.org/TR/its20/#preservespace
http://docs.oasis-open.org/xliff/xliff-core/v2.1/xliff-core-v2.1.html#xml_space
http://docs.oasis-open.org/xliff/xliff-core/v2.1/xliff-core-v2.1.html#xml_space
http://docs.oasis-open.org/xliff/xliff-core/v2.1/xliff-core-v2.1.html#xml_space
http://docs.oasis-open.org/xliff/xliff-core/v2.1/xliff-core-v2.1.html#preserve_space
https://github.com/GALAglobal/TAPICC/tree/master/extraction_examples/xml_space_preserve
http://docs.oasis-open.org/xliff/xliff-core/v2.1/xliff-core-v2.1.html#translateAnnotation
http://docs.oasis-open.org/xliff/xliff-core/v2.1/xliff-core-v2.1.html#ph
http://docs.oasis-open.org/xliff/xliff-core/v2.1/xliff-core-v2.1.html#translateAnnotation
http://docs.oasis-open.org/xliff/xliff-core/v2.1/xliff-core-v2.1.html#ph

XLIFF 2 Extraction and Merg-
ing Best Practice, Version 1.0

Note

XLIFF Core validation artifacts do not support validating translate annotations by design.
It is the ultimate decision of the Modifier if a span annotated as non-translatable will
indeed stay unchanged based on linguistic and context considerations. If the validation of
the non-translatable annotations is necessary, it needs to be added for instance as custom
validation code or a custom Schematron rule, based on particular business needs and
validation infrastructure options.

Placeholders and variables to be replaced with syntactically significant content on runtime are a par-
ticularly difficult use case to address. The functional variable usually doesn't provide much of a con-
text for the translator even in case when not replaced by the <ph> element and just surrounded by the
do-not-translate annotation. The best way to represent such variables is to use <ph> with the type
attribute set to ui and the subType attribute set to xlf:var. See the XLIFF Constraints for the
subType attribute. In general, the <ph> elements need to be accompanied by appropriate context
and editing hints. The disp is suitable to display (in a CAT tool GUI) an example value that is like-
ly to be used on runtime. The same or a related value can be used also for the plain text equivalent
(rendering) hint equiv.

Example: ph_and_mrk.

Merging Translated Content
Modifiers can perform various valid transformations during an XLIFF roundtrip. XLIFF compliant
Mergers need to be able correctly handle all of them, as those changes are canonical validity preserving
operations. See in particular the clause 2.e. of the XLIFF Conformance section.

These operations are (in order of importance or severity of issues caused if ignored):

• Converting CDATA sections and parseable text (such as XML entities) into XLIFF inline codes.

• Segmentation Modification,

• Equivalent conversion of <pc> elements into <sc>/<ec> pairs (always allowed and possible) and
vice versa (only possible with well-formed spanning codes),

• Adding, and removing of inline codes (taking into account the editing hints and their Processing
Requirements),

• Content Enrichment with Annotations and Context Hints,

• Performing of any other changes allowed by Processing Requirements.

Extraction not following best practices usually just shifts the problems further downstream, forcing
other Agents to mitigate the inherited issues, more often than not leading to unexpected, undesirable,
or unpredictable results that will trip over the Merging after the roundtrip.

Additional guidance is also available in the XLIFF Best Practice for Mergers.

Example: merging.

Selecting Language Tags
Agents in the roundtrip, machine and human, need to be able to sufficiently identify the languages used
in XLIFF Documents. The two main languages (the source and the target language) of the XLIFF bitext
are primarily specified by the attributes srcLang and trglang. The optional xml:lang attributes
on the <source> and <target> elements are directly inherited from srcLang and trglang
respectively and are in fact provided only for generic XML Processors interoperability. The attribute
itsm:lang serves just to define inline foreign language spans via annotations if necessary.

12

http://docs.oasis-open.org/xliff/xliff-core/v2.1/xliff-core-v2.1.html#ph
http://docs.oasis-open.org/xliff/xliff-core/v2.1/xliff-core-v2.1.html#ph
http://docs.oasis-open.org/xliff/xliff-core/v2.1/csprd01/xliff-core-v2.1-csprd01.html#type
http://docs.oasis-open.org/xliff/xliff-core/v2.1/csprd01/xliff-core-v2.1-csprd01.html#subtype
http://docs.oasis-open.org/xliff/xliff-core/v2.1/csprd01/xliff-core-v2.1-csprd01.html#subtype
http://docs.oasis-open.org/xliff/xliff-core/v2.1/xliff-core-v2.1.html#ph
http://docs.oasis-open.org/xliff/xliff-core/v2.1/csprd01/xliff-core-v2.1-csprd01.html#disp
http://docs.oasis-open.org/xliff/xliff-core/v2.1/csprd01/xliff-core-v2.1-csprd01.html#equiv
https://github.com/GALAglobal/TAPICC/tree/master/extraction_examples/ph_and_mrk
http://docs.oasis-open.org/xliff/xliff-core/v2.1/csprd01/xliff-core-v2.1-csprd01.html#Conformance
http://docs.oasis-open.org/xliff/xliff-core/v2.1/csprd01/xliff-core-v2.1-csprd01.html#segmentationModification
http://docs.oasis-open.org/xliff/xliff-core/v2.1/csprd01/xliff-core-v2.1-csprd01.html#spanningcodeusage
http://docs.oasis-open.org/xliff/xliff-core/v2.1/xliff-core-v2.1.html#pc
http://docs.oasis-open.org/xliff/xliff-core/v2.1/xliff-core-v2.1.html#sc
http://docs.oasis-open.org/xliff/xliff-core/v2.1/xliff-core-v2.1.html#ec
http://docs.oasis-open.org/xliff/xliff-core/v2.1/csprd01/xliff-core-v2.1-csprd01.html#editinghints
http://docs.oasis-open.org/xliff/xliff-core/v2.1/csprd01/xliff-core-v2.1-csprd01.html#annotations
http://docs.oasis-open.org/xliff/xliff-core/v2.1/os/xliff-core-v2.1-os.html#d0e11123
https://github.com/GALAglobal/TAPICC/tree/master/extraction_examples/merging
http://docs.oasis-open.org/xliff/xliff-core/v2.1/xliff-core-v2.1.html#srcLang
http://docs.oasis-open.org/xliff/xliff-core/v2.1/xliff-core-v2.1.html#trgLang
http://docs.oasis-open.org/xliff/xliff-core/v2.1/xliff-core-v2.1.html#xml_lang
http://docs.oasis-open.org/xliff/xliff-core/v2.1/os/xliff-core-v2.1-os.html#source
http://docs.oasis-open.org/xliff/xliff-core/v2.1/os/xliff-core-v2.1-os.html#target
http://docs.oasis-open.org/xliff/xliff-core/v2.1/xliff-core-v2.1.html#srcLang
http://docs.oasis-open.org/xliff/xliff-core/v2.1/xliff-core-v2.1.html#trgLang

XLIFF 2 Extraction and Merg-
ing Best Practice, Version 1.0

What language tag to use is usually not an issue for languages like Slovak (sk) or Czech (cs) that are
spoken predominantly in one country and encoded exclusively using one script. This becomes a more
prominent question for languages used in different regions, such as English (en-GB, en-US); using
various scripts, for example Uyghur (ug-Arab, ug-Cyrl, ug-Latn); or having multiple variants
like Basic English (en-basiceng).

The use cases for the correctly set fine-grained language tags vary from simple, such as spell-check,
which will behave quite differently for en-GB, compared to en-basiceng; to more complex, like
using fr-FR as a reference language for a Translation into fr-CA .

MT engines will return Serbian encoded with the Cyrillic script (sr-Cyrl) output when the request
contains the language tag sr albeit the user might have meant and expected Serbian written with the
Latin script (sr-Latn). Human translators would hopefully ask which of the two was the desired one
or just provide sr-Cyrl as the machines. More dangerous than translators would be undocumented
internal mapping tables and custom business rules facilitating communication between roundtrip ac-
tors that could assume different defaults when not given an unequivocal language tag, or worse ignore
a valid fine-grained language tag they don't cover.

The XLIFF Standards prescribe that the BCP 47 language tags are to be used as values for attributes
specifying human natural languages used in the XLIFF Documents. The Unicode Consortium offers
a tool available online, which can help to perform basic validation of selected language tags.

Generally, language tags need to be carefully chosen for source, target, and reference languages in
XLIFF Documents, and it is worth your time to consult external resources, or language experts; even
more so, if you are not familiar with the defaults for the language in question.

Example: language_tags.

Validation of Extracted Content
The native format can contain various reserved characters, or their sequences, for structural and inline
markup, as well as for programmatic purposes. While not explicitly violating XLIFF Constraints and
Processing Requirements, their incidence in the Extracted content could point out issues with the
Extraction process.

One could implement a sanity check for the Extractor output that would identify potential problems by
looking for such characters, or sequences of them. Failing such a sanity check would ideally interrupt
the roundtrip as early as possible, allow for an update of the Extraction rules, and for redoing the
Extraction in order to prevent problems further downstream. Not at least, Extraction would expose
such control characters or their sequences to localization transformations that would most probably be
harmful with regards to the Merge and build processes.

Example: sanity_check.

XLIFF Validations
Since XLIFF is a roundtrip oriented format that is supposed to facilitate complex workflows bringing
together best of breed specialized Agents, it makes huge business sense to validate, to validate a lot,
everywhere, and all the time. Successful validation on every input and output step is the critical factor
for successful "blind", plug-and-play, or unsupervised interoperability. If you are designing a service
architecture facilitated by XLIFF as the canonical data model, or if you are otherwise integrating many
services that are consuming and outputting XLIFF, it makes sense to expose XLIFF validation as a
reusable microservice that is freely available and even mandated at every input and output step in your
ecosystem, service layer, or service bus. When your tool is supposed to receive XLIFF Documents,
check first if the XLIFF you are trying to consume is indeed valid. Also if you are outputting XLIFF
Documents that other Agents or service providers are supposed to consume, do check that you are
outputting valid XLIFF. Don't force your service providers to accept invalid XLIFF, rather take their
pushback as a signal that something might be wrong with your process. Do remember that problems
pushed downstream will force various mitigation steps among a potentially large number of Agents

13

http://docs.oasis-open.org/xliff/xliff-core/v2.1/xliff-core-v2.1.html#candidates_reference
http://unicode.org/cldr/utility/languageid.jsp
https://github.com/GALAglobal/TAPICC/tree/master/extraction_examples/language_tags
https://github.com/GALAglobal/TAPICC/tree/master/extraction_examples/sanity_check

XLIFF 2 Extraction and Merg-
ing Best Practice, Version 1.0

and those problems will resurface unpredictably shape-shifted no later than at the time when you will
try to Merge the XLIFF back, or worse as the localized product's issues, if Merging and building
miraculously succeed.

XLIFF is a format that has been blessed with multiple low level implementations, therefore you have
also multiple options for XLIFF validation. Since XLIFF Version 2.1, most of the advanced valida-
tion checks that required custom code in XLIFF 2.0 can be validated using the XLIFF TC provided
Schematron schemas that are in fact an integral normative part of the OASIS Standard. XLIFF TC
provided artifacts (xsd, sch, and NVDL) can be used for validation in any generic XML editor. How-
ever, if you are trying to design an automated workflow you'd not typically rely on manual or semi-au-
tomated validation in XML editors, you ought rather try and build a service that is for instance using
the xslt rendering of the Schematron schemas or create a service out of the command line Lynx tool
that is part of the open source OAKAPI XLIFF Toolkit (java). The open source Microsoft XLIFF Ob-
ject Model (.NET) contains built in validation (can be disabled). The fourth option to validate XLIFF
is Bryan Schnabel's Xmarker. Advanced miscroservices architectures would ideally adopt more than
one low level method of validation. This can be used either for redundancy or for double-checking of
validation results, comparing of error messages for advanced trouble-shooting and so on.

Summary
This specification attempts (among other goals) to make the XLIFF Standards more accessible to
content owners that are not necessarily looking into the full nitty-gritty of the XLIFF specs. It gives
a general guidance how to handle constructs common in HTML and generic XML, it also provides
some basic information on Extraction from Content Management Systems and software resources.
The TAPICC WG3 and the Editors look forward to receiving feedback how to make this Informational
Best Practice even more useful, potentially how and in what directions to expand its scope.

We haven't utterly failed if a multilingual publishing data flow designer took home what are the basic
design principles behind XLIFF as the exchange bitext format, both at the structural and the inline
levels. We hopefully managed to introduce and explain good business reasons for thoughtful, properly
structured, and metadata rich XLIFF Extraction that will in turn facilitate fully automated, gold stan-
dard Merge and target build processes.

XLIFF Extraction can never make sense when perceived on its own, as an isolated process. Since
XLIFF doesn't purport to standardize Merging without the full knowledge of the Extraction mecha-
nism, all implementers that build Extractors will need to build Mergers in order to benefit from the
exercise. In fact, for a corporate owner the Extractor/Merger will be considered a single application
with two end points. Designers of such tools need to be acutely aware that every design compromise
made at the Extraction endpoint will compromise the ability of downstream Agents to perform lossless
bitext transformations and thus will in the end undesirably and sometimes unpredictably affect their
own Merging endpoint that will have to receive the XLIFF Documents after a localization roundtrip.

Sometimes, some service providers do accept horrible and ugly "XLIFF" pretending that there is noth-
ing to worry. In such cases, rest assured that the service provider had to complement the poor Extrac-
tion/Merge job with their own costly pre- and post-processing routines, or worse pushed them even
further downstream onto the translators who may or may not be tech-savvy enough to preserve unpro-
tected features that are critical for your build or runtime functionality. No matter if issues resurface
in your localized product, you can rest assured that you are paying extra for solving issues that you
could have solved easier on your own or you are not providing the translators with sufficient metadata
to produce the best possible technical and linguistic in-context quality.

References
Normative references
[XML] W3C: Extensible Markup Language (XML) 1.026 November 2008 https://www.w3.org/TR/xml/

14

https://www.w3.org/TR/xml/

XLIFF 2 Extraction and Merg-
ing Best Practice, Version 1.0

[XLIFF-2.1] Edited by David Filip, Tom Comerford, Soroush Saadatfar, Felix Sasaki, and Yves Savourel: XLIFF
Version 2.113 February 2018 http://docs.oasis-open.org/xliff/xliff-core/v2.1/os/xliff-core-v2.1-os.html-
http://docs.oasis-open.org/xliff/xliff-core/v2.1/xliff-core-v2.1.html

[XLIFF-2.0] Edited by Tom Comerford, David Filip, Rodolfo M. Raya, and Yves Savourel: XLIFF Version
2.004 August 2014 http://docs.oasis-open.org/xliff/xliff-core/v2.0/os/xliff-core-v2.0-os.htmlhttp://doc-
s.oasis-open.org/xliff/xliff-core/v2.0/xliff-core-v2.0.html

[ISO XLIFF] Edited by Tom Comerford, David Filip, Rodolfo M. Raya, and Yves Savourel: ISO
21720:2017 - XLIFF (XML Localisation interchange file format)November 2017 https://www.iso.org/
standard/71490.html

[BCP 47] M. Davis: Tags for Identifying Languages, http://tools.ietf.org/html/bcp47 IETF (Internet Engineering
Task Force).

15

http://docs.oasis-open.org/xliff/xliff-core/v2.1/os/xliff-core-v2.1-os.html
http://docs.oasis-open.org/xliff/xliff-core/v2.1/xliff-core-v2.1.html
http://docs.oasis-open.org/xliff/xliff-core/v2.0/os/xliff-core-v2.0-os.html
http://docs.oasis-open.org/xliff/xliff-core/v2.0/xliff-core-v2.0.html
http://docs.oasis-open.org/xliff/xliff-core/v2.0/xliff-core-v2.0.html
https://www.iso.org/standard/71490.html
https://www.iso.org/standard/71490.html
http://tools.ietf.org/html/bcp47

	XLIFF 2 Extraction and Merging Best Practice, Version 1.0
	Table of Contents
	Terminology and Concepts
	Introduction
	Specification
	XLIFF Structure
	File Structure
	Role of the <unit> Element
	Controlling Segmentation

	Inline Codes
	Representing Spanning Codes
	Outermost Tag Pairs
	Incomplete Extraction of Inline Codes
	Representing Multiple Subsequent Codes

	Target Content in Extracted XLIFF
	Inserting Source Content into <target>
	Inserting Possible Translations into <target> elements
	State Machine

	Editing and Context Hints
	Non-deletable Inline Codes
	Preserving Order of Codes
	Providing Context
	Considerations for Using Spanning Codes

	Miscellaneous
	Value of the Attribute id
	Whitespace Handling
	Protecting Non-localizable Content
	Merging Translated Content
	Selecting Language Tags
	Validation of Extracted Content

	XLIFF Validations

	Summary
	References

